If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81x^2+2=16
We move all terms to the left:
81x^2+2-(16)=0
We add all the numbers together, and all the variables
81x^2-14=0
a = 81; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·81·(-14)
Δ = 4536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4536}=\sqrt{324*14}=\sqrt{324}*\sqrt{14}=18\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{14}}{2*81}=\frac{0-18\sqrt{14}}{162} =-\frac{18\sqrt{14}}{162} =-\frac{\sqrt{14}}{9} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{14}}{2*81}=\frac{0+18\sqrt{14}}{162} =\frac{18\sqrt{14}}{162} =\frac{\sqrt{14}}{9} $
| 7k+2-2k=15 | | 15+2(6x+4)=7 | | h^2-9=17 | | 1/2(6x+4)=x+3(x+1) | | -16x^2+116x+96=0 | | 3(15×+2)=2(3x-6) | | -6k^2=-216 | | 8x-8+6x+4=360 | | 4(3x-8)=-116 | | -0.5x^2+65x-2100=0 | | 0.4x-1.6+3=7 | | 32=2x+(4x-3)+(x+7) | | X(x)=1−(x−2)2 | | 7r^2-6=246 | | 6x^2+21x−50=0 | | -5(2+8m)=4m-2(5+3m) | | 5/12*q+1/2*q=25-3 | | (3/4f)+16=2-(1/4f) | | |6x-7|=43 | | 9a+15=10a—7 | | 9a+15=10a–7 | | -3(2-5r)=-12 | | u2-100+25=0 | | 6v+2=9v14= | | 6=8/5x | | -2m+11=47 | | 10(5-n)-1=27 | | X+1y=7 | | 4/5x+8=26 | | 6*10^-5x^2-300x-1=0 | | 7x+2/4x-3=x-8/2x+3 | | 13m=78 |